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Parisi and Frisch proposed some time ago an explanation for "multiscaling" of 
turbulent velocity structure functions in terms of a "multifractal hypothesis," i.e., 
they conjectured that the velocity field has local H61der exponents in a range 
['hmin, l/max] , with exponents < h  occurring on a set S(h) with a fractal dimen- 
sion D(h). Heuristic reasoning led them to an expression for the scaling expo- 
nent zp ofp th  order as the Legendre transform of the codimension d-D(h).  We 
show here that a part of the multifractal hypothesis is correct under even weaker 
assumptions: namely, if the velocity field has LP-mean H61der index s, i.e., if it 
lies in the Besov space B~, "~, then local H61der regularity is satisfied. If s < d/p, 
then the hypothesis is true in a generalized sense of H61der space with negative 
exponents and we discuss the proper definition of local H61der classes of 
negative index. Finally, if a certain "box-counting dimension" exists, then the 
Legendre transform of its codimension gives the scaling exponent zp, and, more 
generally, the maximal Besov index of order p, as sp =zp/p. Our method of 
proof is derived from a recent paper of S. Jaffard using compactly-supported, 
orthonormal wavelet bases and gives an extension of his results. We discuss 
implications of the theorems for ensemble-average scaling and fluid turbulence. 
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1. INTRODUCTION 

I n  a s h o r t  A p p e n d i x  to  a l o n g e r  a r t i c le ,  Il) P a r i s i  a n d  F r i s c h  in  1985 

p r o p o s e d  a n  i n t u i t i v e  e x p l a n a t i o n  o f  t h e  s c a l i n g  l a w s  fo r  v e l o c i t y  s t r u c t u r e  

f u n c t i o n s  r e p o r t e d  in e x p e r i m e n t a l  w o r k  o f  A n s e l m e t  et al. 121 T h e  b a s i c  

p h e n o m e n o n  o b s e r v e d  w a s  a " m u l t i s c a l i n g "  p r o p e r t y ,  in  w h i c h  p t h - o r d e r  

m o m e n t s  o f  v e l o c i t y  d i f f e r e n c e s  e x h i b i t e d  s h o r t - d i s t a n c e  s c a l i n g  b u t  w i t h  

e x p o n e n t s  d e p e n d i n g  n o n l i n e a r l y  o n  p,  t h a t  is, as  / ~  0, 

( I v ( r  + t )  - v ( r ) l  p > ~ l : .  (1)  
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with Zp#(Const)p. In this relation, ~ is understood to mean that the 
logarithm of the left side divided by log I has the limit Zp as l ~  0. To 
explain these observations, Parisi and Frisch conjectured that the turbulent 
velocity field in the zero-viscosity limit has a spectrum of H61der singular- 
ities [hmin, hmax] and that the set S(h) on which the H61der exponent is 
<h  has a fractal dimension D(h). Heuristically, it then follows that 

for l ~ 0, with 

I" 

< (~v(/)). > ~ J p(dh) lPh + 

~l~p 

( d -  D(h)) 

(2) 

zp = inf [ph + ( d -  D(h))] (3) 
h 

In these formulas d is the space dimension, d =  3 in the realistic case. 
The mean ( - )  may be interpreted variously as space, time, or ensemble 
averaging. 

Both the experimental observations which motivated the Parisi-Frisch 
theory and their "multifractar' explanation of the phenomena have remained 
controversial. For example, some questions have been raised t3) about the 
data analysis procedures of Anselmet et al. Also, the Parisi-Frisch explana- 
tion was considered by the authors themselves as being just one possible 
explanation of the "multiscaling" properties. We wish to distinguish here 
two different issues. We shall refer to the Parisi-Frisch interpretation of 
multiscaling as the "multifractal hypothesis." If the expectations in the 
scaling laws are considered as space averages, then the validity of this 
hypothesis is essentially a question of abstract function theory. However, 
even if it is true, there is still the question whether the multiscaling 
indicated experimentally really exists for turbulent velocity fields in the 
zero-viscosity limit and therefore whether they are indeed multifractal func- 
tions. We shall refer to the thesis that inertial-range velocity fields are 
multifractal functions as the "multifractal model" of turbulence. Unlike the 
previous issue, the validity of the "multifractal model" depends upon 
dynamical and statistical properties of the Navier-Stokes equations in the 
zero-viscosity limit. 

What we shall show in this work is that, perhaps surprisingly, part of 
the "multifractal hypothesis" is a necessary consequence of the multiscaling. 
More precisely, we shall show that if a velocity field obeys the scaling law, 
as l--, O, 

< Iv(r + !)  - v(r))l p > ~ / =  (4) 
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for any single p/> 1 with absolute values of differences and with the 
expectation considered as a space average, then it is indeed a multifractal 
function in the sense that it has local H61der regularity, with H61der index 
h occurring on a space set S(h). [We should properly refer to this as multi- 
fractality in a "weak sense," since it is not required that the sets S(h) be at 
all fractal in nature.] In fact, we shall show that this "weak multifractality" 
is a consequence of just the property of L P-mean H61der continuity, i.e., 

(Iv(r +l)-v(r))lp)t/p <~ C.l" (5) 

for all 1 with 1~< 1, for some index s > 0  and some constant C >  0. This 
property defines a well-known function space in modern analysis, the 

s ,  ct3 so-called Besov space Bp (e.g., see ref. 4). Furthermore, we shall show that 
the formula (3) holds when the fractal dimension D(h) is taken to be a 
certain "box-counting dimension" Ds(h) (assumed to exist) and Zp is 
defined in terms of the maximal Besov index of orderp,  Sp, as Zp=Sp .p. 
Although some special examples are known, ~SJ the previous condition is the 
only general criterion we know for validity of the "multifractal formalism." 
The result has great significance for attempts at physical theories of the 
exponents Zp based upon use of Eq. (3), such as that of She and Leveque, 161 
since it is then important to know for what dimension spectrum D(h)-- i f  
any- - tha t  formula holds. Recently, counterexamples have been constructed 
by Jaffard ~7~ showing that the formula cannot be generally valid with either 
the Hausdorff dimension DR(h) or the usual fractal (box-counting) dimen- 
sion DF(h). Our results do not directly address the question of validity of 
the "multifractal model" of turbulence, but they do show that this issue is 
substantially equivalent to the question whether turbulent solutions of 
incompressible Euler equations possess Besov space regularity. This latter 
issue shall be discussed further in the conclusion section of this paper. 

For now, it is helpful to indicate a few consequences of the Parisi- 
Frisch formula for Zp which shall be established as theorems below. First, 
since D(h)>~ 0 for all h, we see that 

zp-d_ inf Ih-D~ h)] 
p h e [hmin,hmax] 

~< hmi n (6) 

Therefore, the minimum H61der exponent hmi n m u s t  be no smaller than the 
largest of (zp-d)/p for all p. Second, since Zp <ph + (d-D(h)) for all h, it 
follows therefore that 

O(h) <<, ph + ( d -  zp) (7) 
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so that there are bounds for the fractal dimensions of "singularity sets" in 
terms of the exponents zp for eachp. We should mention that bounds of 
this sort were recently established for Hausdorff dimensions DH(h) by 
Jaffard (8~ and our analysis was primarily motivated by his work. It is worth 
remarking that, in fact, 

D(h ) = inf [ph + ( d -  Zp) ] (8) 
P 

under the assumption that D(h) is convex [and otherwise the right-hand 
side gives the convex hull, conv(D)].  

Let us outline now the contents of this paper. In the following Sec- 
tion 2 we shall review some of the fundamentals of the theory of Besov 
spaces that we shall use in our proofs. Particularly important for us are 
characterizations of those spaces by orthonormal wavelet bases. In this 
section we shall also discuss the problem of defining local H61der classes of 
negative index (which has been considered as well in the recent work of 
Jaffard. 17~) With the definition we adopt, all of the results of the paper 
carry over to the situation with "negative H61der singularities" with no 
change in the proofs. Finally, we establish in this section the relation 
between the "multiscaling exponent" and the maximal Besov index of 
order p. Our discussion in this section already establishes the weak-sense 
"multifractality" of Besov space distributions. However, the main new 
results are established in Sections 3 and 4. In particular, we shall extend the 
result of Jaffard by proving that his upper bound holds also for s < d/p, 
allowing for "negative H61der exponents." In addition, we show that the 
maximal Besov index is given by the Legendre transform of the codimen- 
sion for a certain "box-counting dimension," whenever the latter exists. The 
concluding Section 4 contains our discussions on consequences for tur- 
bulence. We shall consider there briefly the issue of Besov space regularity 
for turbulent solutions of Euler equations. Also, we discuss some distinc- 
tions between geometric and random multifractal functions and the issue 
whether "multiscaling" indeed holds for turbulent velocity fields. 

2. BESOV SPACES AND MULTISCALING FUNCTIONS 

2.1. Reprise of Basic Definit ions and Properties 

The Besov spaces Bp "q for s ~ R, 0 < p, q ~< +oo are now ordinarily 
defined by a "scale decomposition" in terms of a smooth partition of unity 
in the Fourier representation. ~4) For simplicity we shall discuss in this sec- 
tion mostly the case of distributions on Euclidean space R a, but the theory 
extends to distributions on the torus Ta. (gJ We likewise restrict ourselves to 
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scalar functions, because the whole theory carries over to vector-valued 
functions with only minor modifications. By a smooth decomposit ion of 
scale we mean a set of functions {~bjv : N>~ 1 }, with each ~bu in the Schwartz 
space Se(R) such that 

supp ~bN __G_ { k  : Ik[ e [2 u - ' ,  2 u + ' ]  } 

for N >  1, 

supp~b,__ {k :lkl ~ [0, 23} 

(9) 

(10) 

and 

~, ~N= 1 (11) 
N>~1 

For  any Schwartz class distribution f e ,gV'(Rd), its Nth-scale component  f~v 
may be defined as 

1 elk .r> fN(r)  = (-2~)a ( f ( k ) ,  r (12) 

in terms of the Fourier transform distribution f (k) .  Here, ( f ,  q~) denotes 
the usual canonical evaluation of a distribution f on an element ~b of the 
Schwartz class of test functions. Observe that fN is, for each N, an entire 
function of exponential type. The class of distributions B~ "q is defined as 
that subspace of ~' (R d) such that (2s~vfu)e lq(LP(Ra)), i.e., such that 

Ilfll ~;, = Ilf, I I ,  + [N~> ~ (2sNl,fNllL,)q]l/q<oo (13) 

Here II" II/~. denotes the usual LP-norm. When p = ~ or q = ~ ,  the norms 
are interpreted in the conventional sense as supremum norms. The space 
BSp "q is a Banach space with the norm II'll~,~ when 1 ~<p, q~< ~ and 
otherwise a quasi-Banach space. (Note that'll.ll~_,q depends upon the 
smooth scale decomposit ion {~U}, but all such ~ecompositions define 
equivalent norms or quasinorms.) We shall, in fact, be mostly concerned 

. . . . . .  ~ Note  the elementary embedding result that with the space Bp=Bp . 

B~ ,q c B~ ,q" (14) 

for 0 < q < q' ~< co, so that the spaces with q < oo are all contained in B~. 
Another  easily proved embedding is 

= (15)  

for s' > s and any q, q' (see Section 2.3.2 of ref. 4). 
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From the definition given above, it clearly would be very natural to 
have characterizations of the spaces Bp 'q in terms of wavelets. ~l~ In fact, 
a variety of such characterizations based on "atomic decomposit ions" are 
known, and we shall not  discuss all of these (but see refs. 11 and 12). We 
only mention the result most useful for us here, which characterizes the 
distribution s p a c e s  B~ "q by compactly-supported,  or thonormal  wavelet 
bases. Suppose that @',. for v = 1 . . . . .  2 d -  1 are "mother  wavelets" and ~b 
an associated "scale function" which generate an or thonormal  basis (in 
L2(Rd)) as 

I]/Nn,,(r ) = 2au/2~b,,(2Nr -- n) (16) 

for N ~> 0 and n e Z a and 

~bo..(r) = ~b(r- n) (17) 

for n e Z  a. It is known that there are examples of such r ~b which are 
compactly supported and C k for any choice of positive integer k. ~~ Then, 
it may be shown that a Schwartz distribution f lies in B~ 'q for any s < k if 
and only if 

1 \l,'p 
Z I< f , r  <0o  (18) F n E Z  d / 

and 

rz (Z 12N"~ /z+~( f  ~bu.,,)l p < oo (19) 
t - N ~ > 0  \ n E Z a ,  v 

These conditions are modified in the obvious way for p, q = oo. See ref. 11 
(also ref. 12 for similar results). The or thonormali ty  is not  crucial to our  
arguments in the following section, but the compact  support  property is 
essential. 

For  p >t 1 and s > 0 the Besov space BSp "q has an intuitive significance 
which is exposed by a theorem on equivalent quasinorms. Indeed, let d h be 
defined as the difference operator  on 6a'(R d) given by d h = S h -  1, where 
S h represents space translation. Then, for any integer k > s, 

' ( f  dab I,zl~fllqp) l/q (20) Ilfll ~.q = Ilfll Lp + ihl,/+,q 
Ihl ~< 1 

is an equivalent quasinorm with Ilfll~.~ (or norm, for q~> 1). See 
Section 2.5.12 of ref. 4. Therefore, Bg 'q is the subspace of L p which is H61der 
continuous of index s in the space LP-mean sense in the scale Lq-sense. 
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In particular,  Bp for s >  0, p 1> 1 is the subspace of L p which is H61der 
continuous in the space LP-mean sense and B~  for s > 0  is the usual 
H61der-Lipschitz space C s (the Zygmund  class for integer s). 

2.2. Local H61der Classes of Negative Index 

Because the identity CS= B~  holds for s > 0 while the Besov spaces 
are defined for all real s, it is natural  to define H61der classes of negative 
index to preserve this identity. Because of the cited theorems on wavelet 
characterization of the Besov spaces it follows t h a t f ~ a e ' ( R  d) is in C", for 
any real s, if and only if for some C > 0 

I ( f ,  ~o, ,)[  ~< C (21) 

for all n e Z a, and 

I < f ,  @ Nnv >1 ~< c .  2 - N,a/2 +.,., (22) 

for all N >/1, n e Z a, v = 1 ..... 2 a -  1. This result extends well-known charac- 
terizations of the class C* for s > 0. It is easy to check that, when s > - d ,  
a function of the type 

f ( r )  = Irl ~ ~b(r) (23) 

with ~ a C~176 function of compact  support ,  = 1 in a neighborhood of the 
origin, satisfies the previous criterion and therefore belongs to C s with our 
definition. Therefore, this definition of C* captures some of our intuitive 
concept of a function with a "negative H61der singularity." 

However,  one would also like to have a definition of a local Hiflder 
class CS(r) of negative index. For  s > 0 ,  CS(r) consists of those functions 
f e L ~ such that  

( I f ( r  + ~ f ( r ) ' . )  < oo sup (24) 
Ih[~<l 

Parisi and Frisch ~1 proposed to define CS(r) for s < 0  by the same condi- 
tion but without the subtract ion o f f ( r )  (which n o w =  oo). However,  this 
definition is not natural  in the context of our  definition of C s for s < 0 ,  
since it implies that  f must be finite in the closed ball a round r excluding 
its center. In fact, there are elements of B~_ for s < 0 which are infinite on 
a countable dense set of points. A simple example was given by Jaf fardf  8~ 
which is defined in terms of the function f i n  Eq. (23) and an enumerat ion 
(qk : k/> 1 ) of the rational points of R d, as 

g =  ~ ~--ff('-q~) (25) 
k~>l 
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This series obviously converges in the norm I1" II ~ ,  but the element g E B~o 
so defined is infinite at every rational point. 

Instead, we propose a definition motivated by the Theorem 9.2.1 in 
ref. 10 (which simplified an earlier result of Jaffard. c13)) It was established 
there that if f ~  CS(r) for s > 0 ,  then for a compactly-supported, ortho- 
normal wavelet basis C k of order k > s, 

sup I ( f ,  ~N. , ) I  ~< C "2-N~d/2+s~ (26) 
{n, v:suppl,~Nm,3 r } 

for all N>~ 1. Conversely, if Eq. (26) holds and f ~  C ~ for some e > 0, then 

I f ( r + h ) - f ( r ) [  ~<C IhI ' log ~ (27) 

for all h s R e. This is not an exact equivalence, and it is known that the 
condition f e  C" and the logarithmic correction are necessary. However, we 
propose to make the following definition. 

Definit ion 1. ForseR ,  feCS[r]c=forsome C>O,  

sup I(f,~N.~)I<~C.2 -N~a/2+s~ for all N~>I 
{n, v:supptPNm, ~ r } 

Our attitude here is somewhat pragmatic. It would be better to make 
a definition which coincides with the usual one when s > 0. However, for 
s > 0 this definition is "nearly" equivalent to the usual one. Furthermore, 
with this definition f ~ C  s if and only i f f ~ C ~ [ r ]  for all r ~ R  a with a 
uniform constant C, for all s ~ R. In particular, the example g defined in 
Eq. (25) is in C~l-r] (for every r~  Ra). Let us observe that for our proof in 
the following section it is enough to have only the forward implication that 
f ~  C~[r] implies 

sup ](f,~N,,.)l<<.C-2 -N*a/2+~ for all N~>I 
{n,v:supp~lNm,~r} 

Finally, as remarked earlier, the issue of defining negative H61der classes 
has also been discussed at some length in a very recent work of Jaffard. r 

2.3. Mult iscal ing Functions and Maximal  Besov Classes 

Formalizing our earlier considerations, we say that a function f ~ L p is 
"scaling of order p" if 

log IIAufllff 
lim z (28) 

I h l - o  log Ihl 
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for some z > 0 ,  and is "multiscaling" i f f ~ L  ~176 and if Eq. (28) holds for 
some zp > 0 for every p t> 1. It is known that the class of such functions is 

.. (5) nonempty. Let us now define "maximal Besov classes"/~p'q as 

N Bp"q\ U BSp ''q (29) B~ ,q = _ 
s'<s ~ s'>$ 

It is straightforward to check that a function scaling of order p with scaling 
-s for s = zip. In fact, for every e > O, exponent z lies in Bp 

log IIAhfl lp  p . 
log-~l  > ( s - e ) p  (30) 

for sufficiently small [hi, which implies f e B ~  - ' .  On the other hand, if it 
s+, for e > 0 ,  then for small enough Ihl, were true that f e  Bp 

log IlAhfll ff 

log  Ihl 
> (s + e )p+  p . l o g  C 

log [hi 
(31)  

which would contradict Eq. (28). 
Some interesting conclusions can be drawn from this observation by 

recalling a fundamental embedding result for Besov spaces, namely, 
BSp "q c BSp': q (continuous embedding) if p '  > p and s -  dip = s' - dip'. See 
Section 2.7.1 of ref. 4. Obviously s ' <  s. In particular, B~ ~ C s-d/p, for all 

s s ~ R with our extended definition of the H61der classes, and elements of Bp 
are H61der continuous in the usual sense if s > dip. Immediately, a scaling 
function of o rderp  with exponent z has generalized H61der exponent at 
least ( z - d ) / p ,  and is H61der continuous in the classical sense if z >  d. 
Furthermore, a multiscaling function has generalized H61der exponent no 
less than h p = ( z p - d ) / p  for any p~>l. This result is exactly what was 
concluded in Eq. (5) of the introduction by means of the Parisi-Frisch 
expression for zp. Let us note, furthermore, that hp must be a nondecreas- 
ing function of p, since the embedding theorem implies for p ' > p  that 
f e B ; ~ c  Bp,S'-" for all e > 0  and for s' such that s ' -d /p '=sp-d /p=hp .  
However, it then follows that Sp. >~ s' and h v. = Sp, - d/p' >>, hp. Therefore, the 
limit 

h m i n =  lim h v (32) 
p ~  + 0 9  

exists (poss ib ly -  +oo) and gives the minimum H61der singularity off. This 
result may also be stated as 

Zp ~ hmi n .p + o(p) (33) 

822/78/1-2-25 
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for p---, +oo, a well-known result of the multifractal formalism, which is 
here established independently. This fact has some theoretical importance, 
since it shows that the K41 prediction zp=p/3 can only be true if 
h m i  n = 1/3, which seems dynamically unlikely. Furthermore, the embedding 
theorems cited show that any element of B~ for any real s and p > 0 is 
"multifractal" in the weak sense, since B; c C s-alp, with our generalized 
definition, and every point r E R a belongs to Ch[r]  for some h >1 s -  dip. We 
may define S(h) to be the set of points where the maximal H61der exponent 
is <h,  and this set may always be assigned Hausdorff, (upper and lower) 
fractal dimensions, etc. Therefore, a part of the "multifractal" description 
follows immediately from Besov regularity. 

3. THE M U L T I F R A C T A L  F O R M A L I S M  

3.1. Upper Bound on the Hausdorf f  Dimension of S(h) 

Although we have already seen that a form of the "multifractal 
hypothesis" is correct under just the assumption of Besov regularity, we 
have still to derive--  and state the conditions of applicability of-- the 
formulas for scaling exponents, fractal dimensions, etc., proposed by Parisi 
and Frisch. As a first step we shall in this section prove an upper bound 
on the Hausdorff dimension of the set S(h) w h e n f ~  B~. To avoid technical 
complications, we shall give the proofs for distributions on the torus T d, 
but it is easy to carry out the extension to R a with a little work. Note 
that the compactly-supported wavelets are easily "periodized" to give an 
orthonormal basis of L2(T d) and our considerations of the previous section 
all apply. I~~ In this case there are only 2aN(2 d -  1) wavelets for each N~> 1 
(which is the main simplification of working on Td). 

Let us make precise here our definition of the "singularity sets" S(h). 
For every point r E T d, we may define maximal H61der classes at that point 
a s  

Ch[r'l =hQI, Ch'[r'llh'~>h ch'[r] (34) 

and, for e v e r y f e  B~, we may then set _h[r] = h if and only i f f e  Ch[r].  The 
definition of "singularity set" that we use in our argument is then 

S(h)= {r :b[r] <h} (35) 

We denote as DH(h)=dimH S(h) the Hausdorff dimension of S(h). For 
a readable discussion of the definitions and relations of the various 
dimensions we consider, see ref. 14. 
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We now prove the following: 

s T h e o r e m  1. I f f e B p f o r s e R a n d p > O ,  t h e n f o r z = s . p ,  

DH(h) <~ ph + ( d -  z) 

for all h > s - (d/p). 

ProoL For each N~> 1, set 

SN(h) =- ~ {supp I/]Nn v "l ( r N.v,f  )l > C "2 -(d/2+h)N } 
fly 

for some C > O, and 

363 

(36) 

(37) 

It suffices to bound the Hausdorff dimension of S*(h). 
Recall that f E  Bp is equivalent to 

sup [Ud/'~+')u(f, 0r p < +o0 
N ~> 1 x n v  

Clearly, this requires that 

~{(n,V)'I(~bN.,.,f)I>C.2--~d/Z+h)N}<~(const)2 thp+cd-''N (41) 

Since diam(supp ~bunv)=2-NR, for some R > 0 ,  it follows that SN(h) can 
be covered by just 0(2 thp+td-z))u) closed balls of diameter 6N=2-NR. 
Thus, for D > hp + ( d -  z), 

J~u(limsupSN')<~ON( U SN,) 
N '  k N ' > ~ N  

~<(const) ~ 2thP+~a-~]u'(2-U'R) n 
N ' ~ N  

--. 0 (42) 

(40) 

S(h) ~_ S*(h) (39) 

Therefore, for every r~(Td\S*(h)),  it follows that for all N sufficiently 
large and for all n, v, that r~supp~bu,  v implies [ (~0N. , . , f ) [~C.  
2 -Id/z+h~N. In other words, h [ r ]  ~>h, so that 

S*(h) - lim sup SN(h ) (38) 
N 
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as N--* +oo. Therefore, 

dim (S*(h))<~hp+(d-z)  I (43) 
H 

The proof of this theorem is very similar to the argument made by 
Jaffard, ~8~ but somewhat simpler. However, it extends his result to the case 
s < d/p, allowing for "negative exponents." Note that if s > dip we recover 
essentially Jaffard's original result. The reason is that, for that case, f s C ", 
with e = s - ( d / p ) > O ,  so that f~Ch[r]  implies that for all r', I r - r ' l  ~< 1, 

I f r ) - f ( r ' ) ,  ~< C- I r -  r'lh log ( r ~ r , i )  

~< C Ir - r'l h-~ (44) 

for all e > 0. Therefore, _h(r)/> h, where 0 is defined as above but using the 
conventional definition of local H/51der classes. In other words, under the 
additional assumption that f e  C " , / j [ r ] />  h implies that _h(r)>/h, and 

{r :_h(r)<h} ~S(h)  (45) 

Jaffard bounded the Hausdorff dimension of a slightly larger set {r : f  not 
in Ch(r)}, for the case s>(d/p). 

It is a consequence of Theorem 1 that, in fact, wheneverfE Bp, 

z =  inf [ h p + ( d - D n ( h ) ) ]  (46) 
h > s - -  (d/p)  

since the infimum is always achieved at the lower bound hp = s - ( d / p ) ,  
because DH(hp)= 0. This result already appears close to the Parisi-Frisch 
formula (3). However, notice that, for a given p, this formula holds for 
eve~ 3, s such that f ~  B~,. In particular, if it holds for one s, it also holds for 
any s ' <  s. Furthermore, in the Parisi-Frisch formula for the scaling expo- 
nent zp the infimum should be taken only over h ~ h m i  n. TO prove this 
stronger result, we need to use the further information that Sp = Zp/p is the 
maximal Besov index of order p. 

3.2. Parisi-Frisch Formula for the Maximal  Besov Index 

We have already cited the work of Daubechies and Lagarias ~5~ which 
establishes the validity of the Parisi-Frisch formula for the maximal Besov 
index of the solutions of some functional "refinement equations." However, 
in a more recent work ~7) Jaffard has constructed a simple counterexample 
which shows that the Parisi-Frisch formula cannot be generally valid (in 
particular, as a lower bound) if the "dimension spectrum" D(h) appearing 
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there is interpreted as either the Hausdorff dimension or box-counting 
dimension of the singularity sets S(h). Nevertheless, we shall show here 
that there is an interpretation of the dimension spectrum for which the 
formula has a general validity in the Besov space context. It may be noted 
that our approach is very similar to the simple multifractal formalism for 
measures which was proposed by Falconer in Chapter 17 of ref. 14. 

To set up the formalism, we require some definitions. First, we intro- 
duce, for each f ~  ,-.,~"(Td), "normalized" wavelet coefficients 

m Nnv ~ 2dN/2 (f~ ~ Nnv ) (47)  

where {fiNny : Nnv } is an orthonormal wavelet basis. In fact, neither com- 
pact support nor orthonormality will be required here, and it is possible to 
take {~'u.v} to be any Schwartz class "atomic decomposition" for which 
criteria like Eqs. (18) and (19) hold. Then, for each h e R, q > 0, and N/> 1, let 

Wu,,(h ) - :~{nv : 2 -ch-q)N ~ I A N =  ' I > 2 -~/ ,+. lu } (48) 

We can then define upper and lower "box-counting dimensions" as 

/)s(h ) - lim lira sup log2 ,/l#N,,t(h) (49) 
•.[0 N ~  + ~  N 

and 

Ps(h)  =- lim lim inf log2 stzN,.(h) (50) 
~1o N-- +~ N 

It is easy to see that these quantities are well-defined (possibly = - ~ )  since 
JVN.,(h) is nondecreasing in q for each fixed N, h. An important cautionary 
remark is that these "box-counting dimensions" will not generally be the 
dimensions--box-counting or otherwise--of any particular space sets such 
as S(h). Instead, they give information simply about the number of wavelet 
coefficients of a certain magnitude but without providing any information 
on the location of the corresponding wavelets. Therefore, "large" coef- 
ficients at one scale of resolution may be located in entirely different 
regions of space than those at another scale. 

Although these quantities are not the dimensions of any subsets of 
space, nevertheless they have a number of the properties one would 
reasonably expect. We collect these into the following: 

P r o p o s i t i o n  1. For all h e R :  (i) DB(h)<~DB(h)<~d; (ii) _DB(h)> 
- o r  implies _DB(h)>I0 (and the same property for /3B); (iii) _DB(h)= 
/)B(h) = - - ~  for h < hmi n. 
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Proof (i) The first inequality _DB(h)<~DB(h) is immediate from the 
definitions. Also, since YN,.(h) ~< (const) 2 a '̂ (the total number of wavelets 
at scale N), the last part DB(h)<~d follows easily. (ii) These results are 
direct consequences of the definitions and the fact that vV'N,,(h ) > 0 only if 
~h~,.(h) >/1. (iii) If h < hmin, then h + 2% < hmi n for some % > 0. It then 
follows from the fact that IAN.,,I ~< (const)2 -Ih-~"-"~ for all N, n, v that 
~4ru.,(h)=0 for all r / < %  and all N sufficiently large. This gives the 
result. II 

The second part of this proposition states that the "box-counting 
dimensions" can only be negative in the rather trivial case where they 
are equal to minus infinity. The third part expresses the lack of any 
singularities worse than hm~.. 

Making use of these properties, we now prove the following: 

T h e o r e m  2. L e t f ~ B ~ f o r p > 0 .  I f z p = s - p ,  then 

Zp>_. inf [ p h + ( d - O B ( h ) )  ] (51) 
h >~ hmin 

Proof. Let us define 

zp* =- inf [ph + (d-/3B(h))  ] 
/I ~ hmi n 

<. phmi, + d < +m (52) 

>- * In fact, we show, for any e > O, and s * =  z*/p. We must prove that Zp ,.. Zp. 
�9 <~ Zp. Set s ' - s * - e .  We show that for No that f e B p ' - '  which implies Zp 

large enough, 

sup 12~a/z+"~rc(f, ~Ou.v)l p < +oo (53) 
N ~  NO ~ nv 

which is equivalent to f e B p * - ' .  It follows from the definition of 
"box-counting dimensions" that for each h~[hmin,s* ] and e > 0 ,  there 
exists an qo(h)< e/2 and an integer No(h) such that 

YN.,,(h) ~< 2 tn"lhl + ~p/2~u (54) 

when q < qo(h) and N>~ No(h). Because the compact interval Ehmin, s*]  is 
covered by such open intervals ( h -  r/o(h), h + r/o(h)), it is possible to select 
a finite subcollection (h;-q~,  h i+  rh), i=  1, ..., K, which is still a covering: 

K 

rhmin, s * ] ~  ~.) (h , -rh ,  hi+rh) (55) 
i = l  
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Defining No = max1 ~< j~< K No(hi), it follows also that 

g/N.,,(hi) ~< 2 (~lh'l + ~p/2)N (56) 

for each i = I ..... K. if N >/N o. Thus. 

) sup 12s'uA N.,. I p 
N >~ No x nv 

~< sup 2 is, - (h~- ~,)]pN 2 N(~B(h~) + .p/2) -I- 2 (s' - s~ )pN 

N~> NO i 1 

~< sup 2 { = ~  [h iP+ l d -  l~Blhilll} N 2 l q i - - e / 2 ) p N  + 2 -~'pN 

N~> NO i 1 

~< K +  1, (57) 

since the choice was made for each i that r/~< e/2. I 

If  one defines a "wavelet structure function" S (m as - - p  

s (N)  - I 
p = 2a----- ~ IaNn,,I p (58) 

then it is a straightforward consequence of the definition of limit-infimum 
and the criterion (19) that the maximal Besov index of orderp,  zp, may be 
expressed as 

- l o g 2  s (N)  - - p  
zp = lira inf (59) 

N+ +~ N 

Immediately, there is an upper bound 

- -  l o g 2  S (N) - - p  
Zp <~ lira sup (60) 

N~ +~ N 

This formula yields for the maximal Besov index the following estimate 
from above: 

T h e o r e m  3. L e t f E B ~ f o r p > 0 .  I f z p = s - p ,  then 

zp<~ inf [ p h + ( d - _ D B ( h ) )  ] (61) 
h/> hmi n 

Proof .  Consider any h/>hmi,. For  each e>O,  it follows from the 
definition of the limit-infimum that one can find an qo < e/P and an No such 
that 

JVN,,(h) >/2 N(pB(I') - ~  (62) 
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when q < r/o and N>~ No. Therefore, for such N~> No, 

1 s(N)>~ .2-(h+.o)pN 2N(_DB(h)-- ~) 

= 2 - [hp + ( d -  OB(h))] N .  2 -  2~,N (63) 

It follows that 

--log2 Sip r 
lim sup <~ [hp + (d-  PB(h))] + 2e (64) 
N ~  +o'z~ N 

and, since h/> hmi n and e > 0 were arbitrary, 

--log2 S~ ~v) 
lim sup ~< inf [hp+ (d-DB(h))] 1 (65) 
N -  + ~ N h ~> hmi n - -  

Combining the statements of Theorems 2 and 3, we see, under the same 
conditions, that 

inf [ph+(d-_DB(h))]>>.Zp~ inf [ph+(d-_DB(h)) ] (66) 
h/> hmi n h ~ hmi n 

In particular, we have the following result. 

C o r o l l a r y  1. If _Da(h)---/SB(h) for all h~hmin, then for every p > 0 ,  

= inf [ph+(d-DB(h))] - p  
h / >  hmin 

= lim --l~ S ( ' V )  - P  (67) 
N~ +~ N 

In particular, the latter limit exists. 

We therefore see that, under certain conditions, the Parisi-Frisch for- 
mula gives the maximal Besov index of a distribution f with pth-order 
Besov regularity. These results automatically include the cases where f i s  a 
scaling function of order p with exponent z, and multiscaling of general 
order. In fact, we see from the last result that the equality of "box-counting 
dimensions," _DB(h ) =/)B(h ) for all h, is a sufficient "multifractal" condition 
to imply "multiscaling" of the wavelet structure functions of positive order. 
It is unknown to us whether the condition that 

lim lim log2 JV'u,,(h)_DB(h ) (68) 
.1o N~ +~ N 
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for all h/> hmi n implies that f is "multiscaling" in the sense of differences 
(28). At least it will then be true that 

lim inf l~ Ilzl~/ll~ 
Ihl-o log Ihl =zp,  (69) 

with pth-order exponents given by the Parisi-Frisch formula, Zp= 
infh [hp + (d-DB(h))], as the consequence of equivalence of quasinorms. 
One problem which we have not addressed, which should be considered, is 
the possible "basis dependence" of our definition of DB(h). It has not been 
shown that those quantities for a particular Besov distribution f are inde- 
pendent of the atomic decomposition selected in Eq. (48) and therefore it 
is not clear that they have an intrinsic significance (except when Eq. (8) is 
valid). 

4. I M P L I C A T I O N S  FOR T U R B U L E N C E  

4.1. Besov Regular i ty  for  Turbu lent  Solut ions of  Euler 
equations? 

As stated earlier, our results here have no relation to the question 
whether the "multiscaling" which has been reported experimentally actually 
occurs in the inertial range of turbulent fluids. We have given elsewhere 
theoretical arguments using renormalization group and operator-product 
expansion to establish "multiscaling, ''(15'~6) but those arguments require 
hypotheses which are themselves unsubstantiated. (Furthermore, the 
"multiscaling" is there established for velocity differences without absolute 
values and for ensemble averages rather than space averages: see further 
below.) The relevance of the present work is that it shows that multi- 
fractality of the velocity fields, i.e., the "multifracta! model," follows mathe- 
matically under even much weaker conditions than the "multiscaling" which 
originally motivated Parisi and Frisch to their conjecture. In particular, 
LP-mean Hrlder  continuity, or Besov regularity, implies multifractality in 
at least the "weak sense" of local Hrlder  continuity. We believe that Besov 
regularity in space of the solutions of the incompressible Navier-Stokes 
equations is very likely to hold in the limit of zero viscosity. Of course, at 
present, zero-viscosity limiting solutions are shown to exist only in a much 
weaker sense of "measure-valued solutions, ''(~7) but such results are often 
the first step in proving stronger regularity. We hope that some of the 
methods based on Littlewood-Paley-type decompositions, used recently to 
prove Besov regularity for transport equations, (~8) may apply. It does seem 
that the assumption of Besov regularity is compatible with the usual 
phenomenology of high-Reynolds-number turbulence. We believe that the 
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locality of energy transfer in scale, which we have recently proved under a 
stronger assumption of H61der type, t~9~ actually holds just using some 
space-mean H61der property. If that is true, then it is possible to show that 
finite energy dissipation in the zero-viscosity limit requires maximal Besov 
indices sp ~< 1/3 for p >~ 3, generalizing a result claimed by Onsager c2~ 
(which corresponds to the case p = + ~ . )  In other words, energy balance 
alone should require "multiscaling exponents" of order p ~> 3 to take values 
zp <~ p/3, the Kolmogorov values. 2 The key physical question is the locality 
of energy transfer in scale under the Besov regularity condition. 

4.2. " G e o m e t r i c "  vs. " R a n d o m "  Mu l t i f r ac ta l i t y  

A remaining issue to examine is our interpretation of expectations as 
space averages. Under some assumption of space ergodicity, the average in 
a large enough volume should be close to the ensemble average, but there 
are delicate questions of exchange of limit operations involved. In fact, 
there are some reasons to doubt that space averages (in any finite volume) 
and ensemble averages will coincide for multiscaling behavior, because 
there are essential differences between "geometric" multifractal functions 
associated with space averaging and "random" multifractal functions 
associated with ensemble averaging. These were first pointed out by 
Mandelbrot. t22~ The concept of a random multifractal function may be 
formulated within the probabilistic framework of large-deviations theory, 
as follows: If v is a velocity field chosen from a random ensemble, 
then a "scale-/ H61der exponent" HI, another random variable, may be 
defined as 

suPlbl ~<1 log Iv(r + h) - v(r)l 
H,(r) = (70) 

log l 

Assuming space homogeneity of the random velocity field, we find that 
these variables are equal in distribution for all choices of space point r. 
As l~0, the variable Hi(r) will take on the limiting value h if, in a given 
realization, the velocity field has maximal H61der exponent h at point r. 
(To define the variable H/ to allow for "negative H61der exponents," 
wavelet coefficients should be used, following the ideas proposed earlier in 
this paper, but we do not require that generality here.) Therefore, over the 
random ensemble, various values for the limit will occur. The "multifractal 

2 These conjectures have now been rigorously established by P. Constantin eta/. In~ (private 
communication). 
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model"  may  be formulated as a conjecture that  the r andom variable H~ has 
the large-deviations proper ty  with some rate function I(h), so that  

Prob(  { H / ~ h } ) ~ l'thl (71) 

for l~ 0. Such a probabilistic interpretat ion was already proposed in the 
original Paris i -Frisch paper,  ~ and it directly leads to the Legendre trans- 
form expression for the scaling exponents zp, with d-DB(h) replaced by 
I(h). A large-deviations formulat ion very close to ours above has been 
given independently by Frisch. t23) 

However,  while this concept of " r andom"  multifractality is obviously 
quite close in concept to the "geometric" notion, involving space averages, 
which we have employed in this paper,  there are essential differences. 
Chiefly, as noted by Mandelbrot ,  I(h) may be greater than d, the space 
dimension. This can be interpreted geometrically as a "negative dimension" 
DB(h). However,  DH(h) and DB(h) as we have used them in this work must  
be nonnegative. Therefore, it may  be that typical realizations chosen from 
the r andom ensemble of turbulent velocity fields may not be geometrically 
"multiscaling" even if ensemble averages show "multiscaling," or that  the 
space-average and ensemble-average scaling exponents may be distinct. 

It may be worth pointing out, however, a few elementary relations 
between space-average and ensemble-average scaling properties which 
can be readily derived. First, we observe that  "multiscaling" Eq. (1) for 
ensemble-averages implies Besov regularity in space as an almost  sure state- 
ment,  assuming just space-homogenei ty of the ensemble. To  make  the 
proofs as simple as possible, we consider the case of r andom velocity fields 
on the unit torus Td. In fact, for our conclusions only the following conse- 
quence of "multiscaling" is required: 

( Iv( r  + I) - v(r)l ") ~< (const) l  Cptl -~/21 (72) 

for all 1< 1, with some finite constant  for each e > 0. Let us state the result 
as a formal theorem. 

T h e o r e m  4. Suppose that  Eq. (1), or its consequence Eq. (72), 
holds with p> /1  for average with respect to a homogeneous  ensemble. 
Then for any e > 0 it follows that a finite constant  C~ > 0 exists a.s. so that 

fx d ddr [v(r + I) -- v(r)l p ~< C~. l ~'*l - ~'j (73) 

for all l~< 1. In particular,  v has almost  surely p th -order  Besov regularity 
and a maximal  Besov index sp >1 (p/p. 
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ProoL The proof of Eq. (73) is in two steps: (1) First, we establish 
it for all IN.;= 2-N~ almost surely, with ~; an orthonormal basis in R d and 
N~>0 an integer. Set IN=2 -N. Using space-homogeneity, it follows from 
Eq. (72) that 

( X ~ )  ~< (const)- I~ ~/2 (74) 

for all N >/0, where 

d 

XN--INr ~" IT~IA~'~"vI~ (75) 
t 

Applying the Chebyshev inequality then gives for every integer M > 0 that 

P rob ( xN > l ) < ~ ( cons t ) M . l~  "/2 (76) 

and thus 

Prob (XN > I ) <  + ~  (77) 
N = O  

Therefore the Borel-Cantelli lemma implies that X N --..). 0 a.s. as N--, + ~ ,  
and, in particular, that there exists a finite constant C~>0 (which may 
depend upon the realization) so that XN<~C,. Equivalently, for a set of 
realizations of probability one, 

I'r~ ddr Iv(r + IN.i) -- v(r)[ p ~< C~. l~ (1 -,I (78) 

for all N>~0, i=  1 ..... d. (2) We show that Eq. (78) holds in fact for all I~T  d 
if it holds for the IN,~. Note first, Since the shift operator Sa on the torus 
is an isometry in LP(Td),  that 

~< IIJt, Vllp-4-1[~,2vllp (79) 

Next, for any I = (1 (~) ..... I (all) choose the largest component 1 ('') and fix an 
integer N so that 2-(u+~l~<l('n)<2-N. Note, in particular, that 
l>/2-IN+ 11. Since each I lil has a binary expansion l~)= Zj>~ N+ ~ e~ 1 2-J, 
with bits e(j ) ~ {0, 1 }, it follows that 

Ill Ij.i (80) I =  ~ ,~j 
J > ~ N + l , i  



Besov Spaces and the Multifractal Hypothesis 373 

Because we have assumed Ild=~.,vllp ~ C '2  r using Eqs. (79), (80), it 
follows that 

C . d  

J > ~ N + I  i 

with s = ~ p ( 1 - ~ ) / p .  The last statement of the theorem follows by defining 
(2 M to be the set of realizations obeying Eq. (73) with eM= 1/M. The 
required set of probability one is f2' = NM~ 1 (2M. 1 

It is clear that one cannot hope to show more than the inequality 
zp(co)~>~p, since an individual realization may always have, with some 
finite probability, greater regularity than the average in a fixed region. On 
the other hand, a result in the reverse direction is possible if the constants 
C,(co) in the a.s. bounds 

xd dar IA,v(r, co)l p ~ C~:((.o)- I zpl~'~ll - ~  (82) 

with Sp(~O)= Zp(eO)/p the maximal Besov index for sample point o~, can be 
chosen so that ( C ~ ) <  +0o for every ~ > 0. The optimal choice of C~(oo) is 
IIv(., o~)lIB?.-~,, so this condition may be stated as 

(LIvII B;,,,-~) < +oo (83) 

for every e > 0. It then follows easily that 

(Id,vl  p ) <~ ( C,)  .1 :,~ -~  (84) 

where Zp=ess.inf~,Zp((.o). As a consequence of the previous Proposition, 
Zp >~ ~e. Since the inequality Eq. (84) for every e > 0 clearly implies also that 
~p >1 Zp, it follows that (p = Zp, or, 

~p - ess.inf,o Zp(~O) (85) 

Of course, (piP need not be the maximal Besov index of any velocity fields 
occurring with positive probability and, from the definition of essential 
infimum, it follows only that ~p can be approached arbitrarily closely for a 
positive probability set. 

To make clear our hypotheses in deriving these results, we are assum- 
ing that Prob in Eq. (71) is a probability measure obtained by taking the 
zero-viscosity limit of suitable stationary measures for the Navier-Stokes 
dynamics with some external driving forces. In other words, we assume an 
order of limits t ~  +co, then v - , 0 ,  and lastly l ~ 0  in Eq. (71). Each of 
these limiting assumptions requires of course some justification and may 
prove ultimately to be false. Stationary measures Prob(,. I have been con- 
structed for Navier-Stokes equations in a bounded domain, with any 
positive viscosity v > 0 and random forces white noise in time, by Vishik 
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and Fursikov in Theorem XI.2.1 of ref. 25 using the Bogolyubov-Kry lov  
averaging method. However, nothing is known about  the zero-viscosity 
limit of these measures and it has been emphasized to us by U. Frisch 
(private communicat ion)  that the limit, even if it exists, may not be a prob- 
ability measure, as our argument requires. On  the other hand, a viscosity- 
independent moment  condition of the form SUpv>o (10tvlP)~,,)< ~ for any 
p > 1 is sufficient to guarantee tightness of the family of distributions of  6tv 

for each fixed l and guarantees existence of a limit as v ~ 0 (at least along 
subsequences) which is also a distribution (e.g., see Lemma 11.3.1 in ref. 25). 
Therefore, the limit could only fail to be a probability measure if the 
moments  themselves diverge as v ~ 0. The final large-deviations 
hypothesis (71) as 1--*0 appears to be very far from rigorous proof, and 
can only be presently justified by more physical arguments based upon 
"cascade" ideas or renormalizat ion-group pictures. 
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